Wooden Pulleys – Turning

As per Part 1. I now have a working drill and hole saw that runs of an old computer power supply. I can turn wood with the same drill by mounting it in a vice and bolting the wood into the chuck.
Power supplyDrill running off ATX PSU Drill Lathe

Firstly I took an old piece of MDF that was once a set of shelves, then a speaker box, and now wasting away in the garage and cut two pieces out. One was 5″ the other 4″. It took about 10/15mins to get through the MDF, I thought the drill bits were a bit crap but I think the drill itself is probably still underpowered. (it was quite a cheap unit when I bought it) Also I found it was very easy to get on an angle, possibly the density of the wood was different nearer the edges but I found it was digging in quite a fair amount on one side or the other and I ended up with not very even pieces. The first one wasn’t so bad but the second significantly skew. I will borrow a drill press to try and get a better piece, at least until I build my own later.

I put a bolt down the center shaft and tightened it up and placed the bolt into the chuck of my drill, then mounted the drill in the vice. To get foot control I tied a rope around the trigger, which travelled along my workbench to a nail then down and tied to a metal ruler/level at a height where I could push it down to pull the rope and as such, pull the trigger. I had some control over speed, but it could definately be improved.

Working on first pulleyPulley being turned and carved

This is how it came out, I was quite happy with this result.
Finished MDF pulley

I built a second but it came out quite skew, I will use a drill press to re-cut the MDF, and if its faster than the hand drill I might cut two circles, and stick them together to form a bigger pulley. something like so:

plan for new wood pulleycross section new wood pulley
This will also give me a wider groove so I can use thicker belts.

Update 12 July 2010
I also refined my drill/lathe technique a little over the weekend. I think I will modify it further to become a slightly more permanent fixture with a bearing on the other side. because its only fixed to the drill its quite easy to push too hard and bend the drill which alters the shape of the turned wood. to start with I may just buy a 30cm peice of threaded steel, grind myself a nice 3 sided head on one side so that it fits into the drill nicely, and smooth the otherside and it can sit in some sort of fixed socket to provide a more stable shaft.

I also built the new pulley, twice as wide so it will accomodate more reasonably sized belts.


Pulley 3Pulley 3

Currently my plan for the belt is to use rubber from an old push-bike inner tube

    Wooden Pulleys – Equipment

(5 July 2010) – Power and Drills

First thing I needed for my generator was either cogs or a pulley/belt system to drive the washing machine engine. I thought about several different options from buying old car pulleys/belt, using a bevel/helical gear, or building my own cogs/gears/pulleys on the cheap.

I decided the cheapest option (since all my projects try to be as low cost as possible) for me is to try manufacture my own pulley’s from wood.
I needed a few things,

* Hole saw
* Reliable drill to run the saw
* Wood turning equipment to cut the grooves.

I had none of these so started with what I did have.

I had an old portable battery drill that had a battery that was dead and generally ready for the trash, I figured I could wire it into the mains and turns out I was able to find an old ATX PSU that put out enough power, so I snipped all the ATX connectors down fit inside case, covered the ends up with heatshrink (didn’t want one accidentally touching something) and rigged up a switch and so on so I could run it like a lab power supply.


Modified ATX Power SupplyModified ATX Power Supply

(This PSU came in quite handy for other 12v (ish) projects like a peltier effect device I am playing around with.)

So now I have power, then I removed the casing of my drill battery pack, removed all the battery’s and chucked them (they were quite corroded) then basically clamped two cables to the connectors that go inside the drill, unfortunately it wouldn’t let me solder them on so I ended up turning the metal sheet over to clamp the cable in. I tied a knot in the cables before the hole so they wouldn’t tug on the connection. Then ran about 2.5m of cable out to a Molex Plug I picked up from jaycar so I could plug it neatly into the PSU.


Drill with modified battery pack to run off 12v powerportable drill running off power supply

I ended up buying a hole saw, I didnt have anything I could modify to make that, but it was only $20.

For the Lathe/Wood turner I found I could bolt the wood I wanted into work with into the drill, and mount the drill into a small vice and I used a rope tied around the trigger, around a nail, down to a metal level so I had it foot controlled. but I talk about this more in part 2.

Wood turning and Pulley making with a drill in a vice


(17 July 2010) – New Wood Turner

Ive started working on a new wood turner (I cant really call it a lathe as its shaft reliant) pics now, further update coming later.


taking the drill apart
drill too far apartmaking the mount for the drill motor

wood turner mount in progresswood turner mount in progress, side angle

(click for big)

the offcuts from the MDF I was using to make the pulley’s is used (leave no wood scraps behind) so its all odd shapes, its almost artistic! I just need to cut the bottom to a standard height, mount it to a small board, then figure out what ill mount that to. Probably make it like a vice that can be moved around, bench mountable, I also need to make another end that holds the other side of the shaft so that the shaft is stable, not able to move around, which is the biggest problem with the drill-in-a-vice “lathe”.


(28 July 2010) – New Wood Turner: Wiring

I finished wiring and testing the new setup. Power comes off the other psuedo drill pack and I’ve just hacked the bottom off the drill I am using for the turning. Power then goes too the jandal controller for analogue (ie: more presssure more speed) control of the motor. I mounted the original drill control into a recess into the bottom jandal and glued the jandals together. then it goes off to the drill in the mount.

new lathe wired up
Lathe jandal pedal
lathe power 'wiring'

Modular Engine

I was given a ‘broken’ Briggs and Stratton 095722 engine by my father, I casually disassembled it down to the crank over a couple of months, replaced the gaskets, cleaned it up was pleasantly surprised to find it was working once more.

Bore: 60mm
Stroke: 50cm
Displacement: 141cc
Torque: 6.4Ft Lbs (I think is about 3HP)

Then comes the hard part; I had to decide what to do with it.

I decided to make it as portable and modular as possible, so I could attach it to a variety of other projects I could now do, some ideas were

* Go Kart (its so… ‘done’)
* Generator (using an alternator or F&P Smart Drive Washing machine engine )
* Wood turning Lathe
* Motorbike/Scooter

Currently I am working on the generator as I have the parts required and it should be the easiest to make.

The engine currently sits on a makeshift platform to keep it steady and lift the shaft up, because of the carb position, I will not be able to run it sideways to get a horizontal shaft, although I have heard of people rotating it to allow for this.


complete
Briggs & Stratton 095722

almost
Engine almost done