Low Temperature Low Cost Circular Film Light

With any project I do it is important to have nice photo’s that are in focus and well lit. I occasionally dabble in stop motion and other film as well as just the projects you see on this site. Lighting is something I have always had difficulty with and never spent any time trying to resolve. Occasionally I use a work light but I find them annoying to set up and they get very hot and difficult to work with.

Total Cost $28
New CFL Bulbs (8): $16
New Bulb Holders (6): $12
Glue: Already had a bottle.
Mylar: Already had a roll.
Wood (1 30cm x 30cm square and 1  2M x 2cm x 6cm plank: All recycled from old furniture.
Electrical Cabling (1 Mains power lead, 1M of extra blue/brown for individual bulbs): All recycled from old appliances.
Hobbyist Wire (about 2M): Already had a roll.
Polyfill Wood Filler (200ml): Already had a bag, also this is not completely necessary.
Screws (30? ish): Already had.
Painting Tape (3M): Already had

Tools Needed: Ruler, 90 degree edge ruler, Saw (Jig or Hand is fine), Drill, Various Screwdrivers.

IMPORTANT NOTE: I show you how to do some mains electrical wiring. Please exercise extreme caution and seek advice if you are unsure about anything! If you test this before its finished being wired you MUST make sure any live wires are appropriately secured, tape the ends or leave them screwed into a socket.

I watched the indy mogul video here (It is worth watching if your interested in this topic)

But It seems I wasn’t paying enough attention and when I got around to building mine, I built my own rendition of his first version which wasn’t that great. Regardless I will show you everything so you can make your own decisions and see what I learned.

I started out with a blank board of MDF and ruled out some lines for a grid of where I wanted the bulbs to go.

Click any of the pictures to enlarge

Then I drilled holes for the cable and wired them up in parallel. In this photo it is the first socket so the mains comes in via a white cable. It is wired properly only mains side cable is hard to see.

The second socket. You can see the two wires per socket. Because I am using a reasonably heavy grade of wire (suitable for mains power) It is quite thick and can be difficult to get into the socket. If it was particularly difficult (notably with older battens with narrower holes) I would spray the ends out of the cable little then cut a few of the copper strands off, this means that the wire is thinner making it easier to twist around another piece of wire.

It sort of looks like series wiring due to the wires going in and out of each bulb but if you imagine where the electricity flows, since there is two wires in an out of each side of each socket its like an entire ‘hot’ line all over the back of the board.

IMPORTANT REMINDER AGAIN: If you don’t feel confident doing this please seek appropriate advice. Make sure any live wires are safe.

After finishing the wiring I put the bulbs in and tested it.

Note how dark everything else is in comparison to the previous photo. It is the same time but the camera adjusts to suit the additional light. I played around with it a bit and took a couple test shots. I realised pretty quickly that it wasn’t as effective as it could be. I re-watched the YouTube film above and realised what they did; and that I could do it better.

A lot of the light was going sideways but in this configuration only the top of the bulb was in use. With these particular bulbs they are quite short so the height is only slightly longer than the diameter but still: the side outputs more light than the top. If I upgrade the bulbs to larger/longer ones this would be more noticeable. I started to sketch up some designs to convert my board into a sideways design and eventually I decided if I was going to do it I might as well cut the whole thing up and make a completely new shape. Here we go:

I cut up all of the socket holder squares as small as possible. In hindsight I wish I had been more accurate. I did purchase a jigsaw for this but it would of been a good idea to do some more practice cuts first. You will see what I mean here:

I placed them into the expected layout. You might notice they don’t fit particularly well (see the last paragraph). This cleans up a little better later. I then glued them to some cardboard and wrapped it in some painting tape. I mixed up some poly-filler and filled in the gaps to try and smooth out the layout to make it a little cleaner looking and also to increase the strength since its just cardboard holding it together at the moment.

The next day the I removed the tape and sanded it down a little. It came out feeling really strong and ready for the next steps.

I wired up the sockets again

and tested it out

So far so good! Although I did not realise how large it would be. One upside to this is that the further away the lights are from each other the softer the shadows. Imagine the opposite of the sun which is very far away and very small (relatively) it casts very sharp/well-defined shadows which you generally don’t want.

Next I built a mount for the light. quite basic as you can see. A little glue, screws and scrap wood.

While waiting for the glue to dry I measured and then cut up some old thick poster card for a rear reflective board.

Using some double sided tape and glue I attached some mylar (like reflective tin foil only better)

I then took some hobby wire and twisted two strands together for extra rigidity. Taped them to either side and I could adjust the angles and they would stick really well.

A single strand of this gauge wire would not be strong enough, I have heard of using electrical wire although I did not think it would stay in the right shape. The paint tape seems to be strong enough though.

I cut holes in the card for the bracket and the power.

The bracket attaches quite simply and then slots  into the rear reflector. Below is the light with bracket before being slotted in.

Then inserted and tested. The sides hold their position quite well, the card is thick enough and the slot is tight enough that it doesn’t need to be glued or screwed into place.

Time to make some test shots!

With the light bulb in the roof only (150W)

With an indirect work light only (100W)

And the new lamp by itself

Obviously the new lamp beats anything else I have in the workshop.

I built a floor stand which is pretty basic. It stands 2M ish tall and holds the setup pretty well. This way I can adjust the angle and height.

Test shot using camera on auto settings with just the ceiling light

and with the light

Grass Cutter Mk II

Important Update: This doesn’t work! 🙁
I thought this was going to be an awesome re-purposing of my old hand mixer but turns out these things aren’t meant to be used for more than a few seconds at a time.
The second or third time I was using it, I went for about 10 minutes and it overheated and caught fire. I wouldn’t recommend going down this path. Read on if you want to see anyway

(<- Part 1 )

I present to you, the Grass Cutter Mk II

So a list of upgrades/changes

A new handle, taped up to keep it safter and secure. inside this is a lightswitch embedded in the wood for off/on and the control board.

A new adjustable angle handle, I can loosen the bolt and change the angle so if its not really comfortable where it is, I can change it.

The engine is now parrallel to the ground, much more ‘mower-like’ less ‘weed strimmer-like’.  Also I removed the rubber as it wasnt providing any vibration releif and was just making it smelly. The strimmer line (orange twine) is also attached in a more reliable way: I threaded it through a drilled hole in the shaft head, then tied a double knot on each side so it cant pass through either direction.

And a new height setting/adjustment pole. there will be a wheel on here soon, I tried a couch floor knob but it doesnt slide very well. The point of this is to make it easier to push around rather than having to manually hold it at a certain height. although doesnt mean you cant flip it upside down and go manual if you want to do edges etc.

String trimmer from a hand blender (Failed)

Important Update: This doesn’t work! 🙁

I thought this was going to be an awesome re-purposing of my old hand mixer but turns out these things arent meant to be used for more than a few seconds at a time.

The second or third time I was using it, I went for about 10 minutes and it overheated and caught fire. I wouldn’t recommend going down this path.

Read on if you want to see the original

I planted a lawn out the back of the property where the gardener couldnt get to without a key so I needed something to cut the grass. My lawn mower is a bit pre-occupied and my weed-wacker was wacked. So in the usual recycling manner I made my self a string trimmer (weed wacker) out of an old hand blender

Wow look at that, badly thrown together lense flare, a fluro background. This thing HAS to be awesome.

To be honest, the only reason I am calling it MK I  it because its rather hastily assembled and has some design uglies, I’ll probably never rebuild it because it works* (edit: not really see top of this page) and that’s all I care about.

So I started with an old hand mixer/blender motor I had lying about, and thought about strapping it to a peice of wood, without anything else more suitable I made a sort of wooden vice with two threaded steel rods and 4 bolts. This worked really well!

I basically just nailed the control board onto the length of wood for now, holds fine, but I had to wire up a switch. In the interim I have some twine nailed to the board, going over the switch with another small peice of rubber, then round a nail and back to the top of the board for a lever.

I also attached some twine to the end of the engine so I could cut some grass. simple; effective.

bill of components

* engine: from a hand blender like: * a bunch of wood I recycled out of an old couch.

* about a 1/4 of some threaded steel I bought a while back
* a 6cm bolt for the lever
* 5 bolts
* cut mains cable I had left from another project.
* some weed wacker twine for the controller and the cutting part.

 

(goto part 2 -> )

Macro Photography with a budget point-and-click camera

I wanted to purchase a new camera with some good macro options to get better project shots. I also wanted to experiment with a bit of amateur macro photography for a bit of fun. But my budget, as always, was about $0.

Project considerations

  • Low cost
  • Can’t modify existing camera
  • Can be removed or attached easily
  • Works…
  • The first thing I needed was a new lens. I picked up a Macro Zoom Ring +10 Diopter from trademe for $15NZD which was pretty similar to this :

    My budget point-and-click camera obviously couldn’t mount it so I needed to make some things….

    First I needed to make a small extension tube for the lens, and some way of mounting it to the camera. Conveniently, the first thing I laid my hands on, the cap of a bottle of degreaser, just so happened to hold the lens quite snugly. I secured it with black electrical tape, and also wrapped the cap with it several times to block out the light. Then, I cut a hole in the top of the cap, around the size of the existing camera extension tubes so that it could fit snugly on there.

    NB: Cutting through the plastic is much easier with the tape applied. It meants it doesn’t crack when cutting it.

    To mount it to the camera, I built a small perspex base that attached to the bottom of the camera and extended forward so that I could attach the lens and its extension tube to it. When I attached the camera and placed the macro lens onto the mount, it seemed to hold itself in there quite well. (although I may add another bolt to secure it firmly…)

    Now all I need to do is turn the camera on, the lens moves into the hole and I can take macro shots!

    Now for some example shots…

    Sharepoint library columns greyed out / workflow unable to set field in current item after publishing form from infopath

    The problem: all of a sudden you cant edit all or some of your fields using sharepoint designer / columns have become greyed out in the settings.
    eg:

    greyed out colums in sharepoint
    (click for big)

    note some of the columns are greyed out, cant be modifed here or used in the workflow (you can read the fields but not set them)

    The solution: re publish your form and go into every greyed out item, click modify, then click “allow users to edit data in this field by using datasheet or properties page” then republish

    how to fix the columns being uneditable(click for big)

        Homemade Engine Clutch

    I found a problem with my engine; it wont start under any significant load. The second pulley I made meant it was extremely difficult to start.

    pulley = no startMain pulley off engine

    I needed a clutch at some point anyway so I started thinking about how I could resolve both problems at once, removing as much load off the engine on startup and being able to clutch the engine.
    My plan is to put a small disk on the bottom of the shaft, then create a method of being able to push the pulley onto it; a dry friction clutch, but with a few changes. The clutch control will be a nut that I turn remotely (Likely by another pulley). The reason for this is it means I will be able to apply more force to the connecting plates via the bolt, and possibly later I may be able to automate it (ie, mechanical clutch)
    Also it seems like it will be the easiest to build.

    This is what I imagine it would assemble like (click for big)


    first home made clutch assembly prototype design

    More detail on the bottom of the pulley:
    Clutch design prototype other views

    The pulley will turn freely inside the bolt, I may later replace the bolt and bearings with a real bearing perhaps out of a skateboard or something. The bolt pushes the pulley up using the two lower fixed nuts, turning the bolt inside them will push itself up up.

    Update 16 July 2010
    I started working on the pulley/clutch shaft and bearing. I spent most of the time trying to hammer, screw, grind some washers to the right shape. the most successfull was one that I ground down with an angle grinder except for the middle, then bashed the sides up a little bit. I found a aluminium ring which I think came from a hard drive and installed that and it seems to hold everything quite nice. Its not anywhere near perfect, not even near good, but its usable for now.


    Exploded pulley with shaft and bearingsassembled pulley with bearings and various bolts
    (Click for big)

    The left picture shows an exploded simulation of how the bearing fits together, surprisingly this doesnt work too bad. The right image shows what it could look like assembled. Note the bit that says ‘Clutch Control’ this is just a bolt and two washers for image purposes. I need to put some thought into how I will turn the shaft, without allowing the spinning pulley to have any control over it. if I used a smaller pulley down the bottom or in the middle (as pictured), I fear it would be too easy for it to slip and the engine would dis-engage the clutch automatically. I also found I will need to modify the holes that the top bolt and bearing fit into; they are too shallow.

    Update 17 July 2010
    Started building the new base, and resunk the pulley so I had more bolt to play with, I am pretty happy with it. then I sunk a bolt into a wooden beam to go under the engine shaft, I shaped it with a craft knife, chiseled it out a little bit, then wacked it in with a hammer. It feels really solid so I am happy with this part. I in the 3rd pic I have placed it roughly where I expect it to sit. But I noticed I will have to be quite precise, I dont want the too shafts to be mis-aligned because it will mean the clutch plates wont sit true.


    new base in progress

    bolt mounted in a small beam to hold the clutchPlaced clutch in base underside of placed clutch

    I still havent figured out how I can turn the clutch shaft without using too much bolt real estate and keeping it secure so its not able to be spun by the engine. although I am thinking about two small pulleys with some rope attached and wraped around a few times. buy pulling one rope, the pulley will spin the shaft and the height will increase, at the same time another pulley will be pulled and wrapped around the second pulley. I can then pull the second rope to do the opposite.